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Abgtract

Chapter 1 deals with a clags of divisor problems,
The average of the divisor function T, (the number of
representations as a product of Ik factora) over numbers
of the form p~a, p £ x (» prime) is tied up with a
certein conjecture adout the distrivution of primes in
arithmetic progrossions, This work is to appear in the

Proc, of the London Mathematical Society.

Chapter 2 describes some intcrcsting numerical
work by J,W, Porter in connection with Selberg's sieve
which, when joined with some receat theorems of Halberstam
and Riche:t. yields several romarkably good new resulta
in additive prine numbor theory, This work will appear
in Acta Arithmetica, In this Chapter, too, Porter outlines
some progress ho is beginning to make with an improvement
of the Selborg-Buchstab approach to the lower-bound sieve,

Chapter 3 is a survey by H., Halberstam of recent
progress, largcly duc to Richert and himself, towards the
notorious Hypothesis H of Schinzel concerning prime
values assumced sinultancously by numbers of integer
valued polynomials, The progress has taken the form of
approiimating to theo classical questions in terms of
results about alrioat=~primes; and similar approximations
with respect to othor questions in prime numbor theory

are described,
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1, DIVISOR SUMS

Let k be an integer greater than one, and denote by
‘r.“(n) the number of ways of expreossing the positive
. integer n as the product of k positive integers, having
regard to tho ordor of tho factors, Write Ta,k(x) for
the sum

z T (p=a)
e<o<x

where a is a positive integer,

Porter has obtained an asymptotic formula for T, k(x)
]
on the basis of tihe following hypothesis (Hk):
If n(x;d,h) donotes tho number of primes less than
x congruent to h nodulo d, then there axists a number
B = B(k) such that |
— ¥
1i x X ;
/e n 1 T T d@ < e
d<x (logx) (4 h¥=1

Theorom: If (Hl:) is true, then, as x —> o,

D S

k=1 k-1 k=1
T . (x) ~gmdeer 0 (1+R :(p-l) I (1-1) "x10g%%x,
ak (k=17 ¢ oa ( 5L (o) ) pla ( p)

¥We begin with the remark that

) it A agtll LS e iamb o

T () = b3 1
t(:otl ooty SR

— b 1+ o( T 1)
Y Sty S0 <Y Hh ...ty o0

toh ceety®n




£ 2
§
%
4 = k! £ 1+o( 5 1)
. 1/k =
i t .1 <n s tft, veaty oD
£ 1/(k-1
t”-l< <(n/tk 1)
+ <+ (lwlo- *. y1/2

,‘v,c'o'kl
Batt ooty yon

Hence

v T . (x) =Xx! ¥ b X 1+0{ % b 1

Yems ezl (pmad 1y 1 (k-1)
tl<t1 <{(p"‘a)/t1t; seet ¥ 1}1/2

PRamod 4 ¢, ., 'tlc~1

[[]
=

-

z I
1/k
AT St et )

1/(k=1)*"*"*

z 1/2 T 1l
é bl <G/t ty ot VR ardy Lt pex

pifmod 4y ¢, ’“tk-l

+0{ =& z T _o(m) );
(t5x1/2 mexst2 K2 )’

that is

Ta,k(x) = k! Dh{n(x;ty t, coityyra) = nlartf 2, ittt ‘tk-l’a)}

+of

where we write T* for the (k-=1)=fold summation symbol

k-3
= lo x (1)
t<x1/2 g )

1 1/(x~1) 1/2
e x| 1 Stiemp (X7, ) /( <t <Ox/t by Lt )Y




It follows from (1) that

Ta,k(X) = k{14 x,8 +k!S, ~kiSs + 0(::1031‘-3 x) (2)
where
1
S = L% T (3)
(q t,: . eetk_lg&)-l ¢ t1 % ** .tk"l
= T T(xsty & o0ut, _.,8) - LEES (4)
(h H . ..tk-lya)ﬂl { ! t1 k=1 ‘—(q ..'tk"?}
and
S = Ix nlarth bt uuty it b ity h8) (5)
We remark that if t"tz""’tk-l are subject to the
conditions of sumation of Ik,
1§
ity it ) <x . (6)

We now prove a letma (which we shail reqﬁire in the

estimation of 8§ in Lermma 2) concorning sums of the form

Gy = I 0 (+r(p)) (7)
e<t<Y plbt
(tpa)=l

where b,c are positive integers, (b,a) = 1 and f(p) satisfies

the inequality

1
0 < f(p) < =T (8)

Lerma 1,

Under the condition (8),

a(Y) = L(ui‘f’?l) (1--11;) pr!I

P

(o R ot
+o(d)|:b 2;&; : ) (9)

n
pla

P G S O B

b
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Proof.

Define f(d) for square~free d by demanding that f be

multiplicative, so that

e

T B (a)r(m),
m|bt

In the inner s'mmation write m = db6, where dlb, §|t,

and (d,t) = 1, We fund

G(Y) = £ @(a)s(d) I $ T @ (8)e(e)
d|b e<t<Y 8|t
(tyad):"l
= T pf(d)r(au,(Y), (10)
d|b
writing
H(Y) = £+ T @(8)f(s)
- o<ty t o)t |
(t,ad)=1
s 3 1 (es(p),
o<t<Y plt
(t,ad)=1

We now define a multiplicative function g on the square-frev

integers by setting

‘f(p) if pjad

g(p) = |
{ =1 4if plad
so that
H(Y) = % -1- I (1+5(p))
c<t<Y © p|t
= £ : 5 2(m)gm
ry pe (m) glm
e<t<Y mlt

- 5 p2 () g(m)
o<mn<Y mn

nH‘ -HZ (11)




\n

where

p2 () g(m)
5 = I oy
mn<yY

) and
; 2 (s
H e I L (x;}nz(nt) )
m<c )

Now

W o= T iy Bmgin)

n<y © <Y /n s

- E‘.’ v (m;gsz s 2.5 1 & 2 (m) g{m)

n=l a<y * n<y M mz"i'/n m
It follows, after sone manipulation of the error term, that
® 2
g o= £ ELadal) yapve0@2) )+ 00r(a))

m=1

A similar caloulation for H,, together with (11) shows that )
&(p). Y.
Hd(Y) - g(u- > ){1og °+o(1)}+o('r(d)).

The cenclusion of the Letma now follows without difficulty

from (10),

Lemma 2,

Iz=1 k=1 k-1 -
S, = m%ﬁ-'- 5 <1+2.‘:-1—§-L-i))—) lil (1--‘1-)-) .'l.ogk 1 x+0(10g% 2%,
) ' pla p- T (p=- pia

Proof.
We shall write, for r = 1,2,,,,,k=2, and b,c positive

integers coprime to a,

T (x;b,0) =

T ' X
O<tr<(x/b)1/(ﬂl) tr<tr-1<(x/btr)1/r
¢ (ta)=1 (t,._,ra)=1

T 1
t <ty <(x/bt_. ..t )1/ Aot )

(4 ,a)=1
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We further define Tk_l(x;b,c) by tho above equation, save

that the first suriation symbol is roplaced by

T
adt <(vlh\l/k

- ~y a=y -

L <

Wo note that 8 = T, _,(x;1,1), Wo shall prove by induction

on r that

T, (x;b,0) = -L—L p? (1+£ (p))1log (;:;;T)

1 2 (d)1(a re1
+ o(b d?b %ulog x). (12)

whero
o Pi(p-1)T 1\¥
C(r)‘H r+1 ( r(p_l) )pla(l ;)
and
(p) = =1
3
X B Nl-(p"l)

The lemma then follows from (12), Thr truth of (12) for
r = 1 is an imrediato consequence of Lerma 1. Suppose there-

fore that (12) ig truo fer r = R, Thon

(x;b,c) = ESEL I (1+¢ (p))logR —vﬁ-—
1 o&t((x/b;l/(m'm plvt R (bt )
tyalwl

R-1 2 (d) 7(a
+o(l°g xtﬁx Y}‘- dlxbt u‘_&"rl> (13)

If we write, for R > O,

GR(Y) a b)) T (1+f (p)).
o<t<Y p|bt
(t,a)=l

Pad Ld

wo have for tho nain term of (13)




e

C.(R) (o) 2/ (B4
5 ) Log™(—r5 )aa (+)
c bt
C(R)R(R+2 {‘_;,..”)l_l(Ri-z)G (+)10 n-i/ = N s:_‘;.
- LRRD rit)les” “(=rg) %
c
= C(R+1) R+1(  x 1 2 (a)1(d R
= =5 pI|1b(1+1‘m1))1os (Tbc +2)+o(b dzl;b E‘;‘ras—Llos x>’

on applying Lemna 1.
The error torm in (13) <an be casily shown to be
1 2 (d) 1(a R
0.(- T 'LS-IL,S—LIOQ x).
\b d‘b gld

This completes the induction step and the proof of the Lerma,

Lemma 3,

Sy = 0(x logk-'3 x).

Proof:
By the Brun-Titclmarsh theoron,

ft oty
% L -
sy t, .. tyogllogy

8 <=t

whence the result follows without difficulty,

Lerma &,
On the hypothesis (H.k),

h—i
O(x log 2 x).

5

Proof:

We remark first that the swmeation over ¢ in § may

be restricted to the range

b d A e tie e ara i e et R e A
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since the contribution of the remaining valucs of t, may

be shown to be O(x logkm3

the Brun-Titchmarsh theoren,

If we write

: 11ix
Eix,n) = nax | ®(x;n,a) -'—(T|
] lsa<n ) ¢ n +
(a;n)=1
we have
5 « z T,,_l(n)E(x, n)+x 1o:>gk-3 x log logx
1+ -B
n<x (logx)

By the Cauchy=~Schwarz inequality and Hypothesis (H.k) ,

z Tyemq (RIE ()

.'."lla

l -
n<x “(logx) B

IN

(ngx % _, (n)E(x,n) )1/3( . E(x,n) )1/2

1—
n<x k(log x) B

"

- ) )1/2::1/2
n

« xl/z( 5 )-%(1;2 ~4k+6)

n<x

3

X xlog 2x.

(logx

The theorem now follows from (2) and Lermmas 2, 3 and 4,

» log logx), by an application of

(14)

et i ke A i b e
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2, THE SMALL SIEVE

A. AbReiiy ana Cnishi
shown the importance of the solutio.ns of certain differential-
difference equations and parameters defined in torms of

thoem in the Selberg lower=bound siove method,

For each # > 0. let Un(“) denote the (continuous)

solution of the diffcerential=difference equation,

(u-“on(u))' = —uu-n-lau(u-z), (u> 2)
=K =YX
o, (w = Lptdou®, (O<us<2,

Further let v, denotc the (unique and positive) solution

of the equation

n, (x) = xx j‘: (?n-(-:—;-l-)-- 1)t“"1 dt = 1.

Porter has investigated these functions on a computer and
has extendsd the table of values of v, as far as x = 16,
He has also found and corrected what appears to be a

systematic error in tho table of values of g (u) given by

Ankeny and Onishi,

The results of these calculations have a number of
consequences of which some of the rost interesting are

surinarized in the

Theoren:

(1) There arc infinitely many primes p such that
(p+2) (p+6) is tho product of at most 7 prime factors,

(ii) There arce infinitely many n such that (8n+1)(n?2+n+1)
is the product of at most 6 prime factors,

(iii) There are infinitely many primes p such that

(p+2) (p? +p+1) 1is the product of at rost 9 prime factors,
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B, Poster hag now obtained a lower hound for the

‘non-linear' sieve vhich is slightly superior to that

given in the Third Quartorly Report. As usual, we suppose
that we have a scquonce A of intogors and a set P of primes

for which we can find a number X, a rultiplicative function

w(d) and numbers R, satisfying a number of conditions of

which the most important are tho following:

(i) T 1=-“i$-91x+n-

ach d a?
dln

(i1) There exists & numbor % > 0 guch that

T Q-gpl-logp = xlogx+0(1);
p<x

(iii) There exists a nunber £ suxnh that

(a) X
t @2(@3Y'Y|rR,| = of—t0r
d<§z l dl (logn"’l x)

where v(n) denotes tho nurmber of prime factors of n,

We seek upper and lower bounds for the quantity

S(Aq;g.z) a ]{ae:ﬁ; qla and (a. I p) = 1}|.

peP
o<z
As before we let, for r = 2,3
()]
= Kl -
Ny, p(X) = j‘x t7 Tm, pep (t71) dt,

interpreting 7 ¢) as nn(x).

w,1°

Wo suppose that the esquation

1
S C nn.Z(X)

14

has a unique rocot hr (a conjecturc that is supported by

-
BT VI
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nunierical evidence, at least for small x), Then starting

from the second iteration of the Buchstab identity in the

form
& = S 'P| )- H X3
S(ﬁqeg z) (-qsu Z 2 é;(a S(qu Erz)
p<g2/(1+}\u)

. £ s( Bpp ) - £ (4 P.p)

z <p; <p <z bqp‘ 22 i z Sp<z ' sp’ '
B <g2/(14‘}\n) gz/(l'.'}\n)sp

PR ER pek

we obtain the following bounds:

s(A ;P,2z) < QLSLK N (l-QLRL)F <£5&££)+ error terms
~q'~ q P K

n<z log z
and
. wiq) w lo
S(Aq,zg z) 2 -!f—x ng:(l--.gl?l.)f"(i;g%)". error terms,
with
F;L(u) = 1+ ”n.a(“)
and
ALk
; 1=n (u+ ( t; ) {nu(xn+1)-nx,3(hn+1)} (w A +1)
£ (u) = 3§
x
l~1- nn'3(u) (u> Xn+-1)

Numerical investigation of thesce functions and their
consequences in the applications of the sieve is in

progress,
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12
3. THE SMALL SIZVE: PACGRESS TOWAIDS HYPOTHESIS H

Prime number theory studies the distribution of primes
in sequences of natural numbers, such as N itself, arithmetic
progressions and polynoriial seguences (such as m + 1, n= 1,2,...),

An extensive range ol such questions is embraced by

Hypothesis H (Schinzal 1958)

»Let‘q .....fs be distinct, irroducible polynomials € Z [x]
(with positive lasading coefficicnts) and supposo that 1 "‘fg
has no fixed primo divisors, Thaen thoro exist infinitely

many integers n such that oach fi(n) (1 =1,,..,,8) is PRIME,

When g = 1 and %4 (a) = an+ b, with (a,b) = 1, H asserts
in etfcct that the arithmetic progrcssion an+b (n = 1,2,...)
contains infinitely rany primes; this was proved by Dirichlet

in 1837 and is thc only case of H known to be true!

The gencral cese g = 1 was conjoctured as long ago as
1857 by Bouniakovsky; an interesting particular case would
bom +1 = p infinitoly oftun (to bo written i.o, for short),
The case of g ;Lnoar polynomials was first conjeciurcd by
Dickson in 1964; vith g = 2, fy(n) = n and £, (n) = n+ 2 we

should obtain the princ twins conjocture.

Let us write F8 n fy .., fg, and lect PT denoto an glmost-
prime of order r, tial is, a number having at most r prine
factors, counted according to multiplicity, Then H asserts,

subject to the stated conditions on FG that
(1) F () =P i,o.
G( g

Although experimer.tal and heuristic ovidence suggests not

only that (1) is truc but that it is truce very often indeed
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(H has been formulated i:: quantitative form by Bateman and
Horn), H appears to e, at the presont state of knowlodge,
almnst honolosaly difieult. Novortheless. let us formulate
a companion conjecture, H*, which, if anything, lies even
deepor!
Hypothesis H*

Let Pe (p) denote tl:o numbar of solutions of the congruence
P (x) 2 Omodp, O < x < p and suppose that Pg (p) < p for all
primoa p (as in H), as well as that ps(p) <p-1if p}FB(O)

(this roquiremont can “a aconn to be ossentially necessary) .

Assume that fi(n) Fa(L=1,..,,8).

Then

(2) ? (p) =P i.o.

It is easily scon that the case 3 = 1, f; linear leads,
in particular, to tho prime twins coajecture (again) and to
Goldbach's conjeeturo,

The object of tiiis survey is to describe the currently

best known approximctions to H ond H¥; though far short of

what is probably trie these approximations - of type

' o o{n
(" .g(h) = P i.0.
and
(2') Fﬂ(p) = Ph* 1.044

]
wherc h = h(g,k) end =% = hk(g,l2) (iz = deg FS) - are
nevertheless of such & quality as to ropresent, 1 believe,

results of intrinsic intcrost.,

(ii) Results: g = 1

Here, for the casce of a singlo irreducible polyunomial
Fy, = (f;), we obtain tic sharpest results, An acccunt of the

method of proof is to D¢ found in H.-E. Richert (Mathematika 1969)

{5k
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where theorem 1 bHolow, as woll as the corollaries of theorem 2,

are steted explicitiy,

Theorem 1 If dog ¥y = k, ther, under the conditions in H;

5(2) = }k+l i,0,,
and, under the conditions of K¥*,
I (p) = Py, 1.0,

Thus, for oxample, 1% +1 = Py i,0,, and p2 +p+1 = Pg 4,0,
In the lincar caso of H* wo hava
Theorem 2 If ob # O, (a,b) = 1 gnd 2|ab,
ap+h 3 Py i.0.

of tho primec factors ol Py, none i3 lesg than (tiN)lla;in fact,

Py is either a P, or has a (non-rupoated) prime factor between
(ZiN)llB and (liN)Bla. iforoover,

1 (1-=2yr) 10 BLl-X

. o om 8
lip:p < %, ap+ > 9;}I2.3p>2 -2 lo@ x

As contributions towards tlic prisie twins and Goldbach

conjecturcs one caxn glow in this way that

Corollary 1 pt2 = P i,o,
and

Corollary 2 If n is a lorge cnouph cvoen natural nunber, then

n can be roprescnted 1 the forn

m = p+Psy,

Lot us talkec a = 3 and b = 2 in tinorem 2, Therec is an
interesting connoction hore with anothior o0ld conjecture in
rmultiplicative nunboer thoory: namely, that if d(n) is the

Dirichlet divisor Tunction, thon there exist infinitely many n

Mt Kt Gk dnitey
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such that d(n+l) = d(.:), Now il wo couid bc surc in theorer 2

—m——aa

that the Py is, 1,0,, tlio product of three distinct primes,

it 18, all wo can doduco is that oithor the conjecture is

true or 8p+1 a3 P, 1,0,/

(This observation aross Tron o conversation with Professor

Mirsky and Dr, Vaugiaz.)

Intuitivoly, oo would oxpoct botter results if ono
conuiderod instend of polynomials in a single variable, forns

in several variablcocs, In confirnation we have

Theoren 3 (G, Greavos = J, of Nuabor Theory 1971) If F is

an_irreducible form e Z[x,y) of degrec & > 3, without fixed

prirne digﬁporgl,tho:
Flcyn) = P[»/2]+1 i.0,

For exarmple, if X = 3, 7{n,n) = P, 1.0,

(The casc of quadratic forms was alroady settled by de la Vallee

Poussin,)

(ii4) Results: g > 1

H.E, Richert a::d I have dovoloped and refined the nethod

of Ankceny and Onisiit (Actn Arithuctica 1964) to yield all

the rcesults listed Heolow; a full account of the method and
of the proofs will bo given in a Sforthcoming book by Richert

and nysclf on Sievo ictlods, To gain the maximum precision

frorm the notheod oz mugt have recourge to numerical integration;
this has boen donc for sovoral special problems in the theorem
of Scetion 2A, Thero is another netizod which yields results

’

as general as thogo 1istod below, cduc to Miech (Acta

Arithmotica 1964); “ut our rosults aro always at lenst as

good as his, and nootly hetter,

o

Y
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Theorem Lot a,, %, (1 = 1,,..,5) be intogers
satisfying

&

If the polynocpial I (ain+ bi) satisfies tho conditions in H,
i=1

it is infinitely »often o Ph Rrovided

(3) h = k(z) > (g+1)1ogvg+g-1 ;

8
and if it satisfies the conditions of H¥, then I (aip+ bi)
i=1
is infinitely cftexn o Ph* proviced
(4) h* = h*(g) > (z+%) log 2v8+ 2~ 1~ %(g/vg)

the v _ occurring in (3 and (4) increases with g, and
o

vg/g > 2.44 .., Qg g ~» ® (soe Table 1 p, 18)
For uxample, wo have h(3) = 10 and h*(3) = 14 as

adnissible choices in thooren 5, Tabloe 2 providos such

information for otiher values of g, For g very large, we see

that

hig) ~ glogg+ (1.892.,.)g

Theorcm & is 2 tpecial case of the following quite

general result.

Theorem 5 1If Fg satisfies thoe conditions of H, then

infinitely often Fs(n) = P, provided (k = deg Fg)

/ 1 Voo k-
h = h(S,k) > 5\1"'5‘)103 (-éh' ..)+l:-1--}-‘-8--§- .

3

and if Fg satigfies th:o conditions of H*, then infinitely

often, F‘g(p) = Py, provided

h* = h*(g, k) (w L Y5, 2k-g &
= £, >g..+—2-:-c- log 2g.. +2k~-1-~ R v
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With the hel: of Table 1, many nunericel illustrations
may be constructecd., HHore aro two sprocianl results where
maximum precision has hoeen sacrificod to simplicity of form:

if k > 5, wo have

Fz (n) = 1.0,

Tl+2 log %] +1

in the case of H; and, in thc caso of H¥,

F,(p) = 1.0,

F[amz logk]+3
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2,06,.,
&.42,,,
6.85,.,.
9.32..,
11.80.,,
14,28..,,
16,77 ¢4,
19.25.,.
21.,74,..
24,22,,,
26.70..,
29,20,.,
31,68,,,
34,15..,
36.62,.,
39.09,..

Table 1

~
S 3
(84
~J
o o]

2¢ 27 33 33 46

v
S/8

2,06,,,
2.21,.,
2.28,,,
2.33...
2,36,.,
2,38...
2.39...
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S 2.41,,,

2.42, ..,
2.42,,.
2.43.,.
2.43,..
2.43...
2,44, .,
S.44...
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(iv) Related results

The methods for proving the results of section 2 (the

tase & = 1) <ain Lo nade to y
terms of almost-priiies, to tie famous classical problems
concerning gaps betweon conscecutive primes, and the least
prime in an arithriet’c progression. Theorems 6 and 7 are
slight refinements o2 %iro theorer:s in the paper of Richert
cited earlier, The refinement armounts to introducing some
control on the multinlicity of the prime factors of almost-
primes, and is rnace ppossible by aprlying some old rcesults a

of Roth and Halberstanm-~Rcth oz gaps between consecutive

k-free numbers (i, Loxndexn Math, Sce, 1951)

Theorem 6 Lot PJE_;:) denote_a li=frue almost-prime of

order r, Then thcre is a

252) in [x-x6/11. x) for x 2 %,
P5(3) in  [x- /1) for x 2 x5,
P$2) in [x-x3/11, x) for x> x,,

and a

1
pi[é(r*l]) in [x__xr-(2/7" x) for x> X Tr25.

These results siould be comparcd with the recent result

of H, Montgomery, acccrding to which there is a prime in
g S

e

[x=3? , x) if x x_(e). 3

Theorerm 7 Sup=ose that a and b are covrime matural

nunbers. Then the aritimetic progression bmoda contains a

92(2) < Y5 (o > o), P,(a) < a /7 (a 2 a3),

1

LTy

(a2 a,) and a P_ <=
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These results giould be neasured against Linnik’'s famous
result which, in a lator forr:, states that the progression
bmoda contains = prine p < a777; and the result of Elliott
and Halberstam according to whic¢l: the least prime p(e,b) in

ilte arithmetic progression bmoda satisfies
pla,b) € ¥(2) loga.bt(a) (a2 ao)

with 6(a) any positive function tonding monotonically and
arbitrarily slowly to @, for asyrptotically ¢(a) progressions
bmod a, for almost all a,

Fluch has proved recontly that bmoda contains a
Pfa) < a3/2; it would hoe interestinz to see whether the P,
in theorem 7 could ho cliosen squarefrcee - this is probably
rather difficult, Not only should we then have an improvenment
of Fluch's result, Hut also of the old Prachar-Erdos result
concerning the least scquarefroce number in an arithnietic

progrossion,

To illustrate tae versatility of the modern sieve

method, let ne conclude by quoting the following recent

result:

Theorem 8 (Dosirouillers 1971 = unpublished) If ¢ is

irrational, there cixist infinitely many integers n guch that

[an2] = Ps.
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